consumption is based on the highest second-highest value at any receptor in any one year, and the annual $PM_{2.5}$ increment consumption is based on the maximum concentration at any receptor in any one year. Using the $PM_{2.5}$ increment consumption statistics with the updated lower emission rates, the 24-hr $PM_{2.5}$ increment consumption decreases from 3.2 to 3.0 ug/m³, while the annual $PM_{2.5}$ increment consumption remains unchanged at 0.12 ug/m³.

Enclosed is a disk containing all revised computer modeling files.

2. Calculation of Auxiliary Boiler CO and H₂SO₄ Emission in parts per million (ppm)

The auxiliary boiler CO and H_2SO_4 emissions in parts per million (ppm) corrected to 3% O_2 (dry basis) are calculated using Equation 19-1 from 40 CFR 60, Method 19. Equation 19-1 is solved for ppm at 3% O_2 dry, as follows:

ppm = (E in lb/MMBtu)/[(K)(8710 dscf/MMBtu)(20.9%/(20.9%-3.0% O₂))]

Where K is the conversion from lb/dscf to ppm, which is 7.27 E-08 for CO and 2.54 E-07 for H_2SO_4 . The updated calculated values are as follows:

CO: 4.7 ppmvd @ 3% O₂ H₂SO₄: 0.35 ppmvd @ 3% O₂

3. Correction of Minor Typographical Errors

Table 6-2 in Attachment 1 contains two typographical errors that have been corrected and are shown in bold. Attachment 2 shows corrections made to the lb/MWhr values for CO in Table 2-1 of our December 11, 2013 Attachment 1, which had been inadvertently transposed.

If you have additional questions on this letter, please contact either me at (617) 803-7809 or George Lipka at (617) 443-7545.

Sincerely,

Leith H. Tennedy

Keith H. Kennedy Senior Consultant – Energy Programs

Attachments